Investigation of Sunflower Dust Properties that Contribute to Combine Fires

January 11th, 2012 NSA Research Forum Fargo, North Dakota

Joseph Polin

Ag. & Biosystems Engineering Dept.
South Dakota State University
Brookings, South Dakota

Outline

- Introduction
- Laboratory Testing
 - Started May 2011
- Results
- Conclusion
- Future Work

Introduction

Background

- Harvesting sunflowers lead to fires on combines
- More sunflower related fires than other crops

Project Goals

- 1. Analyze physical and chemical properties of dust
- 2.Locate source of sunflower dust

Laboratory Testing

Dust sample preparation

- Sunflower and corn stover plants
- Milling stage with attached vacuum
- Particle separation stage using sieves

Mesh #	Particle Size		
F0	(μm) 710-300		
50	710-300		
100	300-150		
230	150-63		
500	63-25		

 $(1 \text{ mm} = 1000 \mu\text{m})$

Laboratory Testing

Ignition point of dust layers

Hot Plate Apparatus

Ignition Point Results

Time (min)

Time (min)

Ignition Point Results

		Corn Stover		Sunflower	
Mesh #	Particle Size (µm)	Ignition Point (Deg. C)	Ignition Point (Deg. F)	Ignition Point (Deg. C)	Ignition Point (Deg. F)
50	710-300	320	608	290	554
100	300-150	310	590	280	536
230	150-63	310	590	280	536
500	63-25	290	554	260	500

- Smaller particle sizes exhibit lower ignition points
- Sunflower dust has lower ignition point by 30°C at every particle size
- Collaborating farmers supplied field samples during 2011 sunflower harvest fires

Collected Field Sample 280°C 536°F

Physical Properties

Physical Adsorption

- •Micromeritics Accelerated Surface Area and Porosimetry Analyzer (ASAP)
- Nitrogen gas molecules adsorb to particle surface
 - Measures surface area and total pore volume

Surface Area

- Sunflower dust has higher surface area
- Higher surface area allows for higher heat transfer and lowers ignition point

Total Pore Volume

- Sunflower dust has higher total pore volume
- Higher pore volume allows more air closer to particle surface

2nd Project Goal

What sunflower parts are responsible for generating dust?

Chemical Properties

•Volatile Organic Compounds (VOC's) and Ash (Minerals) Composition

Part of Sunflower	Average Volatile %	Average Ash %
Outer Stalk	77.72	4.23
Whole Heads	79.44	6.56
Inner Stalk (Pith)	75.45	11.17
Collected Field Sample	76.45	13.58

Chemical Structure

Fourier Transform Infrared Spectroscopy (FTIR)

- Analyzes chemical bond structure on particle's surface
- Plants primarily consist of Carbon and Oxygen
- Focus on C=O and C-O bonds

FTIR - Sunflower Comparison

Field sample most similar to inner stalk pith material

Conclusion

- Sunflower dust has lower ignition points than corn stover
 - Higher surface area
 - Higher total pore volume
- Inner stalk pith material appears to be source of field sample dust
 - Volatile and ash content are similar
 - FTIR indicates similar amount of C=O and C=O bonds

Future Work

- Air suspended dust test
 - Ignition point of dust flowing in air
- Static electric spark test
 - Minimum electrical energy required for ignition
 - Dust layers and air suspended dust
- Develop solution to help reduce combine fires
 - Based on final understandings of dust ignition characteristics
- Started as single year study on sunflower dust

Acknowledgements

- Funding Agency
 - South Dakota Oilseeds Council
- Research Team
 - Prof. Zhengrong Gu
 - Prof. Daniel Humburg
 - Mr. Kevin Dalsted
- Collaborating Farmers
 - Scott Foth
 - Clayton Colson
 - Jerry Sperry

Thank You Any Questions?