Part 1:Progress on Rust Resistance Breeding of Confection Sunflowers and

Part 2: Sunflower SNP Genetic Mapping

Li Gong^{1,2} Sam Markell², Brent Hulke¹, Tom Gulya¹, Lili Qi¹, Venkatramana Pegadaraju³, and Quentin Schultz³

¹USDA, ARS, NCSL, Fargo, ND ²NDSU – Plant Pathology, Fargo, ND ³BioDiagnostics, Inc., River Falls, WI

Part 1: Progress on Rust Resistance Breeding of Confection Sunflowers

Objectives

- 1. Transfer rust resistance genes from oil sunflower to confection-type
 - Limited resistance in commercial confection hybrids
 - Confections are generally more susceptible to diseases
- 2. Molecularly mark the resistance genes

Rust resistance lines used in this project

Lines	Usage	Rust resistance		Origin of rust resistance	
		Race 336	Race 777		
MC 29	R-gene donors	R	S	Wild <i>H. annuus</i> in Texas	
HA-R2		R	S	Wild H. argophyllus	
HA-R3		R	MR	Wild H. annuus, H. argophyllus and H. petiolaris	
HA-R6	R-gene mapping	R	R	A breeding line from France	
HA-R8		R	R	A landrace in Arizona, USA	
RHA 397		R	R	South Africa	
RHA 464		R	R	Wild <i>H. annuus</i> collected in California	

Progress on the introgression of rust resistance genes to confectionary sunflower

Recurrent parent (RP) × R-gene donor

Recurrent parents(RP)

- CONFSCL B1
- CONFSCL R5
- Highly susceptible to race 336 and race 777

R-gene donors

MC 29, HA-R2, and HA-R3

CONFSCL B1 as the recurrent parent of MC 29 and HA-R2 CONFSCL R5 as the recurrent parent of HA-R3

Release new rust resistant confection lines

2013

Molecular mapping of new rust resistance genes

Evaluation of rust resistance in F₂ and F_{2:3} families

F ₂ Populations	Harvest of F ₂ seeds	No. of F ₂ plants	Harvest of F ₃ seeds	Rust test for F _{2:3} families
HA 89 × RHA 464	Spring, 2010	141	Fall, 2010	141 × 20
HA 89 × HA-R6	Fall, 2010	142	Spring/Summer2011	70 × 20
HA 89 × RHA 397	Fall, 2010	142	Spring/Summer2011	70 × 20
HA 89 × HA-R8	Fall, 2010	142	Spring/Summer2011	Will start in Feb

20 seedlings was rust inoculated in each F₃ faimily

Mapping of rust resistance gene in RHA 464

Polymorphism screening

- •870 mapped SSR markers
- •398 showed polymorphism

Bulked segregant analysis

- •R-bulk: 10 homozygous resistant F₂ plants
- •S-bulk: 10 homozygous susceptible F₂ plants
- Designated as R₁₂
- •20 markers previously mapped in LG11 showed polymorphism
- •7 polymorphic between R and S-bulk
- •Genotyped in 141 F₂ individuals of HA 89 and RHA 464

Mapping R_{12} using SSR markers

LG11 LG11

- After BSA, genotyping only focus on those markers mapped in LG11 in the published maps
- 12 SSR markers associated with R_{12} were mapped in this population

- In the SNP mapping project, all polymorphic SSR markers were genotyped, then CRT169-11, ORS1118-11 and CRT275-11 previously mapped in other LGs were mapped in LG11
- 15 SSR markers associated with R₁₂ were mapped

Allelic analysis of rust resistance genes in HA-R6, HA-R8, RHA 397 and RHA 464

200 plants / F₂ population evaluated for rust resistance

Part 2: Sunflower SNP Genetic Mapping

Mapping population

- F₂ from HA 89 and RHA 464
- HA 89 is susceptible to rust and downy mildew.
- RHA 464 is resistant to rust and downy mildew.
- 141 individuals

Available markers

•SNP

2797→ **2446**

•SSR, as bridge/anchor markers

291 → **238**

•Genes: R₁₂ and Pl_{ARG}

Mapping construction

- •JoinMap 4.1
- Mapping algorithm: Regression Mapping
- Mapping function: Kosambi
- Mapping parameters

Lod threshold: 1.00

Rec threshold: 0.4000

Jump threshold: 5.000

Ripple value: 1

SNP mapping results of HA89× RHA464

Totally, 2665 markers were mapped in 17 LGs

- •SNP 2431, ranged from 40 in LG17 to 430 in LG10
- •SSR 233, ranged from 3 in LG13 to 27 in LG10
- $\bullet R_{12}$
- •LG1, LG8 and LG10 with a larger amount of markers

SNP mapping results of HA89× RHA464

□ Length (cM)

Map length of each LG (cM)

Totally, this map covered 1251.3 cM

- •Ranged from 25 cM in LG17 to 107 cM in LG9
- •LG13, LG14 and LG17 with a shorter map coverage

Co-segregated SNP markers clustered and distributed in all 17 LGs

SNP markers linked to rust resistance gene R_{12}

Summary of SNP mapping results

- 2665 markers located in ~1250 loci
- composed of 2431 SNP, 233 SSR and R_{12}
- 1251.3 cM,
- ~1 cM per locus
- R₁₂ was flanked by two groups of co-segregated markers

Special for this population

- Lower map coverage of LG13, LG14, and LG17
- Co-segregated SNP markers, totally 1415 SNPs (58.3%), clustered and distributed in all LGs

Future work

- MAS of homozygous BC₄F₂ individuals, obtain rust resistant homozygous BC₄F₃ families before growing season this year. The confection breeding lines resistant to the predominant race will be released in 2013
- Continue identifying molecular markers linked to new rust resistance genes in HA-R6, HA-R8 and RHA 397
- Continue investigating the allelic relationships among new rust resistance genes in this project.
- Finalize the SNP mapping in F₂ population of HA 89 and RHA 464
- Map integration of all mapped rust genes in this project

Acknowledgments

- Angelia Hogness
- Megan Ramsett
- Hannah Worral
- ND Department of Agriculture
- National Sunflower Association