Continued Study of Sunflower Dust Properties that Contribute to Combine Fires

January 9th, 2013 NSA Research Forum Fargo, North Dakota

Joseph Polin

Ag. & Biosystems Engineering Dept.
South Dakota State University
Brookings, South Dakota

Outline

- Introduction and Background
- Brief Review of Previous Work
- Laboratory Testing
- Results
- Conclusion

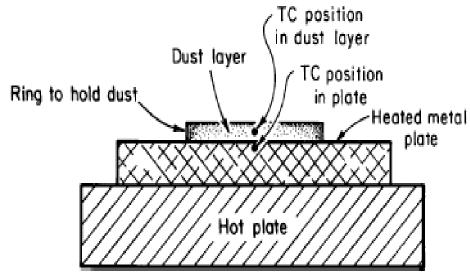
Introduction

Background

- Harvesting sunflowers lead to fires on combines
- More sunflower related fires than other crops

Project Goals

- Investigate primary ignition source
- Develop a system to help prevent fires from this source



Brief Review

- Dust layer auto-ignition point identified using a hot plate apparatus
- Auto-ignition defined as sustained combustion

Brief Review

 Sunflower dust has lower ignition point than corn stover

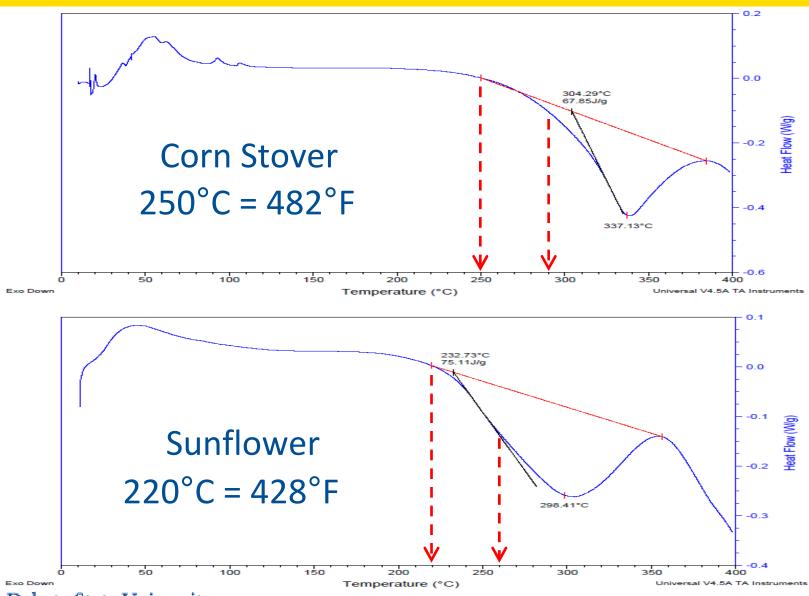
		Corn Stover		Sunflower	
Mesh #	Particle Size (µm)	Ignition Point (Deg. C)	Ignition Point (Deg. F)	Ignition Point (Deg. C)	Ignition Point (Deg. F)
50	710-300	320	608	290	554
100	300-150	310	590	280	536
230	150-63	310	590	280	536
500	63-25	290	554	260	500

Conclusion of Previous Work

- Sunflower dust has lower ignition points than corn stover
 - Unique physical characteristics
 - Higher surface area and porosity
- Inner stalk pith material appears to be source of field sample dust

Combustion Thermodynamics

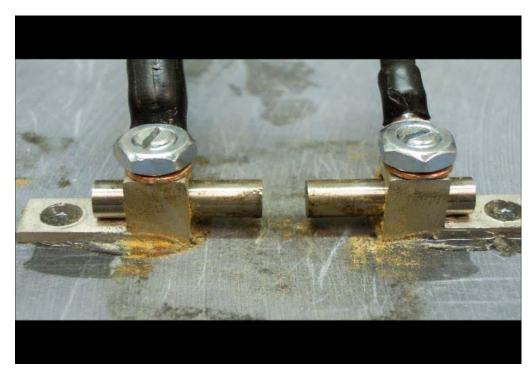
Differential Scanning Calorimeter (DSC)


- Applies temperature ramp to analyze combustion reaction
- •Monitors heat flow absorbed (endothermic) or released (exothermic) from the sample

Bomb Calorimeter

- •Ignites entire sample
- Calculate heat of combustion

DSC Results

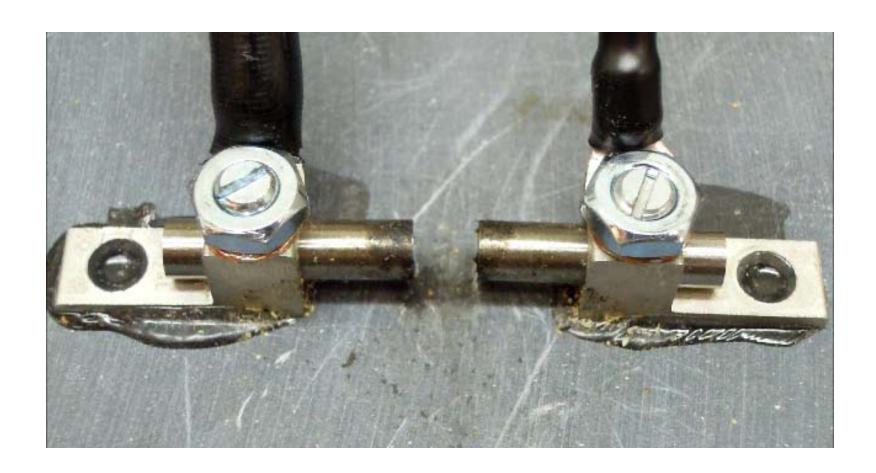

Calorimeter Results

	I			
Mesh	Particle Size (µm)	Ignition Temp. (Deg. F)		
#	Tartiele 3ize (piii)	Corn Stover	Sunflower	
50	710-300	608	554	
100	300-150	590	536	
230	150-63	590	536	
500	63-25	572	500	
	Mesh Samples tilization Temp.	482 428		
Volatiliz	zation Energy (J/g)	67.85	75.11	
Total Com	bustion Energy (kJ/g)	12.48	13.77	

- Sunflower releases volatiles at a lower temperature
- Sunflower releases more energy through volatilization and total combustion

Static Spark Testing

- Identify whether static electric discharge is a significant ignition source
- Experimental design is capable of various intensity and frequency


Single Sparks Dust Layer

Single Sparks Field Sample

Increased Intensity

Increased Intensity

Dust Layer Analysis

- Single static sparks aren't able to provide enough energy to start auto-ignition
- Electricity continues through charred material and extends "flame front"
- One ember is enough to start a new smolder

Dust Cloud Spark Testing

Conclusion

- Sunflower has a lower volatilization point than corn stover
- Sunflower releases more energy during volatilization and total combustion
- Single static sparks aren't able to provide enough energy to start auto-ignition
- Must prevent first initial "flying embers"

Reference from Related Research

- Dr. John Shutske at the University of Minnesota
- Estimates that over 75% of all combine fires start in the engine compartment
- http://www.extension.umn.edu/cropEnews/2006 /06MNCN46.htm

Acknowledgements

- Funding Agency
 - South Dakota Oilseeds Council
- Research Team
 - Prof. Daniel Humburg
 - Prof. Zhengrong Gu
 - Mr. Kevin Dalsted
- Collaborating Farmer
 - Scott Foth

Thank You Any Questions?