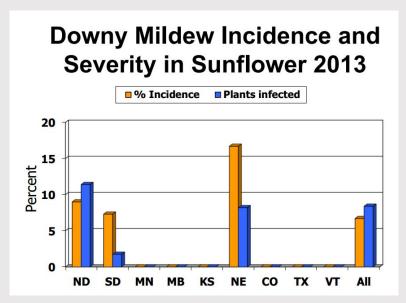
Development of Super Confection Sunflower Effectively Resistant to Downy Mildew and Rust

Guojia Ma^{1,2}, Samuel Markell¹, Lili Qi²

¹NDSU – Plant Pathology, Fargo, ND


²USDA, ARS, NCSL, Fargo, ND

Outline

- Background knowledge
- Research objectives
- Research progress of 2014
- Mapping of RHA 468 DM resistance gene
- Future work
- Acknowledgements

Background Knowledge

- Sunflower downy mildew (DM), caused by *Plasmopara halstedii* (Farl.) Berl. et de Toni, one of the serious sunflower diseases in some regions of the world
- Significant yield- and quality-limiting factor
- P. halstedii survives for up to 10 years in soil as sexual, thick-walled oospores

(Kandel, 2014 NSA forum)

(Photo by Markell)

Background Knowledge, cont.

- Management includes crop rotation, fungicide treatment (seed treatment), control of weed hosts, DM resistant hybrids, etc.
- Development of DM resistant hybrids is top choice for disease management
- More than 20 DM resistance genes $(Pl_1-Pl_{18}, Pl_{21}, Pl_v, Pl_w, Pl_{x-z}, Pl_{ARG}, etc.)$ have been identified in sunflower and wild species
- None of them in confection sunflower

Progress of Molecular Mapping of DM R-Genes in Sunflower

Gene	Linkage Group	Source line	R-gene origin	Reference
Pl ₁₃	1	HA-R5		Mulpuri <i>et al</i> . 2009
PI ₁₄	1	HA-R4		Bachlava et al. 2011
PI ₁₆		HA-R4		Liu <i>et al</i> . 2012
PI _{ARG}	1	RHA 419	H. argophyllus	Dußle <i>et al</i> . 2004
PI ₁₈	2	-	H. argophyllus	Qi <i>et al</i> . 2013
PI ₁₇	4	HA 458, PI 468435	Wild <i>H. annuus</i>	Qi <i>et al</i> . 2013
PI ₁	8	RHA 266, RHA 274	Wild <i>H. annuus</i>	Mouzeyar et al. 1995
Pl_2	8	AMES 3235, PI 497250, RHA 274	Wild <i>H. annuus</i>	Vear <i>et al</i> . 1997
PI ₆	8	на 335, на 336	Wild <i>H. annuus</i>	Roeckel-Drevet et al. 1996
PI ₇	8	HA 337, HA 338, HA 339	H. praecox	Bert <i>et al</i> . 2001
PI ₁₅	8	RNID		De Romano et al. 2010
PI ₅	13	INRA inbred line XRQ, Progress	H. tuberrosus	Bert <i>et al</i> . 2001
PI ₈	13	RHA 340	H. argophyllus	Radwan <i>et al</i> . 2003, 2004
Pl ₂₁	13	HA 61		Vicourt et al. 2012

DM Resistance Testing in Sunflower Seedlings

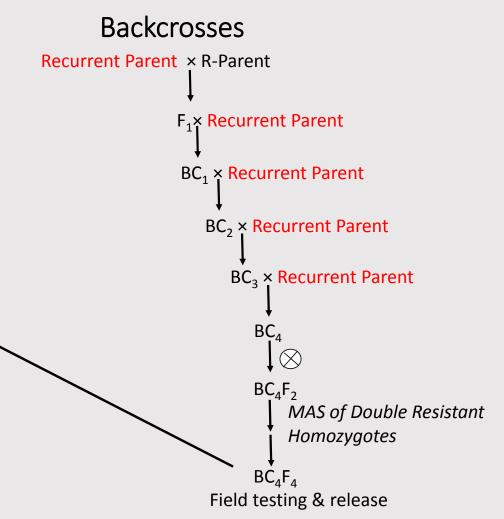
(Photos by Liu)

Research Objectives (2014 – 2017)

- Transfer DM resistance genes from oil-sunflower into confection sunflower
- Create superior confection sunflower germplasms with both DM and rust resistance
- Develop DNA markers linked to disease resistance genes to facilitate marker-assisted selection

Research Strategy

Special crosses


- ✓ CONFSCLR5 × RHA 464 ($PI_{ARG} + R_{12}$)
- ✓ HA-R6 (R_{13a}) × HA 458 (Pl_{17})
- ✓ HA-R6 (R_{13a}) × new DM R-line $(PI_{18}$, from *H.* argophyllus PI 494573)

Final products (BC₄F₄)

Confection line 1: $PI_{ARG} + R_{12}$

Confection line 2: $PI_{17} + R_{13a}$

Confection line 3: $PI_{18} + R_{13a}$

Available DNA Markers for Selection of Double Resistant Homozygotes in BC₄F₂

Gene	Available SSR marker	Available SNP marker	Reference
Pl _{ARG}	Yes	Yes	Wieckhorst <i>et al</i> . 2010; Qi <i>et al</i> . 2012
Pl ₁₇	Yes	Yes	Qi <i>et al</i> . 2013
Pl ₁₈	Yes	Yes	Qi <i>et al</i> . 2013, 2014
R _{13a}	Yes	Under development	Gong <i>et al</i> . 2013

2014 Goals

- Create the first cross in greenhouse in January and backcross (BC₁) in the summer greenhouse and BC₂ generation in the winter greenhouse
- Test all generations in laboratory/greenhouse for resistance
- Begin the process of identifying molecular markers for the DM resistance gene derived from RHA 468

1st Year Research Progress

- Made crosses: CONFSCLR5 × RHA 464, HA-R6 × HA 458, and HA-R6 × new DM resistant line from H. argophyllus PI 494573
- DM resistance testing (race 734) of F₁ of HA-R6 × HA 458 and HA-R6 × new DM resistant line
- DM and rust (race 366) testing of F₁ of CONFSCLR5 × RHA 464
- Backcross of F₁ to recurrent parents to produce BC₁

1st Year Research Progress, cont.

- DM testing of BC₁ of HA-R6 × HA 458 and HA-R6 × new DM R-line
- DM and rust testing of BC₁ of CONFSCLR5 × RHA 464

BC ₁	No. of seeds germinated	No. of seeds inoculated	No. of DM R-plants	No. of DM & rust double R-plants	
CONFSCLR5 × RHA 464	405	243	14	5	
HA-R6 × HA 458	100	32	8	8	
HA-R6 × new DM R line	120	75	33	33	

Backcross of the selected BC₁ to recurrent parents to produce BC₂

1st Year Research Progress, cont.

Molecular mapping of DM-R gene in RHA 468

- Mapping populations
 - F₂ and F₃ populations were developed from the cross of HA-R8/RHA 468
 - o HA-R8: resistant to rust, but susceptible to downy mildew
 - o RHA 468: resistant to downy mildew, but susceptible to rust
- Downy mildew evaluation in F₃ population
 - o 183 F_{2:3} families (30 seedlings each; 5,490 in total) were inoculated with DM race 734
 - ➤ 53 homozygous susceptible
 - ≥ 30 homozygous resistant
 - ➤ 100 heterozygous resistant
 - o DM resistance in RHA 468 is controlled by a single dominant gene

1st Year Research Progress, cont.

Molecular mapping of DM-R gene in RHA 468

- Pedigree of RHA 468: RHA 428/RHA 426//RO 12-13/3/RHA 274/PRS 5
- RHA 428 was thought to be the DM R-gene donor for RHA 468. However, RHA 468 is resistant to race 774, whereas, RHA 428 is susceptible to race 774
- Difference of DM resistance specificity between RHA 468 and RHA 428

Lina	No. seed	No.	DM spore		DM score	
Line	germinated	inoculated	Race	ID#	S	R
Car 272 (S-check)	20	11	774	41	11	
RHA 340 (R-check)	20	11				11
RHA 428	20	11			11	
RHA 468	20	12				12
Car 272 (S-check)	20	12	774	47	8	
RHA 340 (R-check)	20	13				13
RHA 428	20	14			10	4
RHA 468	20	12				12
Car 272 (S-check)	20	12	774	131	12	
RHA 340 (R-check)	20	14				14
RHA 428	20	12			11	1
RHA 468	20	13				9

1st Year Research Progress, cont.

Molecular mapping of DM R-gene in RHA 468

- No LG13 molecular markers associated with DM resistance in RHA 468, but LG1 markers
 - Hypothesis: RHA 468 DM gene is derived from RHA 428 (LG13)
 - Bulked Segregant Analysis (BSA) was conducted in RHA 468 F₂ population
 with LG13 markers (64 SSRs and 47 SNPs), and no marker-trait association was found
 - However, LG1 SSR markers showed association with R-bulk
- The DM R-gene in RHA 468 is located on LG1
- Genotyping of F₂ population with LG1 SSR and SNP markers is underway

Future Work (2015)

- Create BC₃ generation in spring greenhouse and BC₄ generation in winter greenhouse
- Continue lab/greenhouse test of all generations for resistance
- Complete molecular mapping of the resistance gene in the line RHA 468
- Begin the process of identifying molecular markers for the DM resistance gene derived from H. argophyllus PI 494578

Acknowledgements

- Angelia Hogness
- Dr. Yunming Long
- Dr. Zahirul Talukder
- Chris Misar
- Cullen Walser
- Emily Wentzel
- National Sunflower Association
- Specialty Crop Block Grant, USDA-AMS
- ND Department of Agriculture

Thank you